📢 Gate广场 #创作者活动第一期# 火热开启,助力 PUMP 公募上线!
Solana 爆火项目 Pump.Fun($PUMP)现已登陆 Gate 平台开启公开发售!
参与 Gate广场创作者活动,释放内容力量,赢取奖励!
📅 活动时间:7月11日 18:00 - 7月15日 22:00(UTC+8)
🎁 活动总奖池:$500 USDT 等值代币奖励
✅ 活动一:创作广场贴文,赢取优质内容奖励
📅 活动时间:2025年7月12日 22:00 - 7月15日 22:00(UTC+8)
📌 参与方式:在 Gate 广场发布与 PUMP 项目相关的原创贴文
内容不少于 100 字
必须带上话题标签: #创作者活动第一期# #PumpFun#
🏆 奖励设置:
一等奖(1名):$100
二等奖(2名):$50
三等奖(10名):$10
📋 评选维度:Gate平台相关性、内容质量、互动量(点赞+评论)等综合指标;参与认购的截图的截图、经验分享优先;
✅ 活动二:发推同步传播,赢传播力奖励
📌 参与方式:在 X(推特)上发布与 PUMP 项目相关内容
内容不少于 100 字
使用标签: #PumpFun # Gate
发布后填写登记表登记回链 👉 https://www.gate.com/questionnaire/6874
🏆 奖励设置:传播影响力前 10 名用户,瓜分 $2
AI Agent能否成为Web3与AI融合的关键推动力
AI Agent能否成为Web3+AI的救命稻草?
AI Agent项目在Web2创业中热门、成熟的类型主要是企业端服务类,而在Web3领域中模型训练、平台集合类项目因其在构建生态系统中的关键作用而成为主流。
当下Web3的AI Agent项目数量不多占比8%,但它们在AI赛道中的市值占比却高达23%,因此展现出的强大的市场竞争力,我们预计随着技术成熟和市场认可度提升,未来将出现多个估值超过10亿美元的项目。
对于Web3项目而言,对于非AI核心的应用端产品,引入AI技术可能成为战略优势。对于AI Agent项目结合方式应注重全生态系统构建和代币经济模型设计,以促进去中心化和网络效应。
AI浪潮:项目迭出和估值抬升的现状
自ChatGPT在2022年11月问世以来,在短短两个月内就吸引了超过一亿用户,到2024年5月,ChatGPT的月收入已达到惊人的2030万美元,而OpenAI在发布ChatGPT之后,也迅速推出了GPT-4, GP4-4o等迭代版本。如此迅猛的态势,各大传统科技巨头意识到LLM等最前沿AI模型应用的重要性,纷纷推出自己的AI模型和应用,例如,谷歌发布了大语言模型PaLM2,Meta推出了Llama3,而中国公司则推出了文心一言,智谱清言等大模型,显然AI领域已然成为兵家必争之地。
各大科技巨头的竞赛不仅推动了商业应用的发展,同时我们从开源AI研究的调查统计发现,2024年的AI Index report显示GitHub上的AI相关项目数量从2011年的845个激增至2023年的约180万个,尤其在GPT发布后的2023年,项目数量同比增长了59.3%,反映了全球开发者社区对AI研究的热衷。
对AI技术的热情直接反映在了投资市场上,AI投资市场呈现出强劲的增长,在2024年第二季度呈现爆发式增长。全球共有16笔超1.5亿美元的AI相关投资,是第一季度的两倍之多。AI初创的融资总额更是飙升至240亿美元,同比增长过一倍。其中,马斯克旗下的xAI更是筹集了60亿美元,估值为240亿美元,成为仅次于OpenAI的估值第二高的AI初创公司。
AI技术的迅猛发展正以前所未有的速度重塑着科技领域的版图。从科技巨头间的激烈角逐,到开源社区项目的蓬勃发展,再到资本市场对AI概念的热烈追捧。项目层出不穷,投资额屡创新高,估值也随之水涨船高。整体而言,AI市场正处于一个高速发展的黄金时期,大型语言模型和检索增强生成技术在语言处理领域实现了重大进展。尽管如此,这些模型在将技术优势转化为实际产品时仍面临挑战,如模型输出的不确定性、生成不准确信息的幻觉风险以及模型透明度问题。这些问题在对可靠性要求极高的应用场景下变得尤为重要。
在这一背景下,我们开始对AI Agent展开研究,因为AI Agent强调解决实际问题与环境交互的全面性。这一转变标志着AI技术从纯粹的语言模型向能够真正理解学习并解决现实问题的智能系统进化。所以我们从AI Agent的发展中看到了希望,它正逐步弥合AI技术与实际问题解决之间的鸿沟。AI技术的演进不断重塑着生产力的架构,而Web3技术则在重构着数字经济的生产关系。当AI的三大要素:数据、模型和算力,与Web3的去中心化、代币经济和智能合约等核心理念相融合,我们预见将催生出一系列创新性应用。在这个充满潜力的交叉领域,我们认为,AI Agent以其自主执行任务的能力,展现出了实现大规模应用的巨大潜力。
为此,我们开始深入研究AI Agent在Web3的多样化应用,从Web3的基础设施、中间件、应用层面,到数据和模型市场等多个维度,旨在识别并评估那些最具前景的项目类型和应用场景,以深入理解AI与Web3的深度融合。
概念厘清:AI Agent的介绍和分类概览
基本介绍
在介绍AI Agent之前,为了让读者更好理解其定义和模型本身的区别,我们通过一个实际场景来做举例:假设你正在规划一次旅行。传统的大型语言模型提供目的地信息和旅行建议。检索增强生成技术则能提供更丰富、具体的目的地内容。而AI Agent就像是钢铁侠电影中的贾维斯,能理解需求,还能根据你的一句话主动搜索航班和酒店,执行预订操作,将行程添加到日历中。
目前行业内普遍对AI Agent的定义是指,能够感知环境并做出相应行动的智能系统,通过传感器获取环境信息,经过处理后通过执行器对环境产生影响(Stuart Russell & Peter Norvig, 2020)。我们认为,AI Agent就是集合了LLM、RAG、记忆、任务规划和工具使用能力的助手。它不仅能够单纯的信息提供,还能够规划、分解任务,并真正地执行。
根据这一定义和特性,我们可以发现AI Agent早已融入我们的生活,在不同的场景中得到应用,例如AlphaGo、Siri、特斯拉的L5级别以上的自动驾驶等都可被视为AI Agent的实例。这些系统共同的特质就是都能感知外界用户输入,并据此做出相应对现实环境产生影响。
以ChatGPT为例进行概念厘清,我们应当明确指出Transformer是构成AI模型的技术架构,GPT是基于此架构发展起来的模型系列,而GPT-1、GPT-4、GPT-4o分别代表了模型在不同发展阶段的版本。ChatGP则T作为基于GPT模型进化而来的AI Agent。
分类概况
当下AI Agent市场尚未形成统一的分类标准,我们通过分别对Web2+Web3市场中204个AI Agent项目打标签的方式,根据每个项目对应的显著标签,分为了一级分类和二级分类。其中,一级分类为基础建设,内容生成,用户交互三种类别,再根据其实际用例进行细分:
基础建设类:这类专注于构建Agent领域较为底层的内容,包括平台、模型、数据、开发工具,以及较为成熟便底层应用的B端服务类。
开发工具类:为开发者提供构建AI Agent的辅助工具和框架。
数据处理类:处理和分析不同格式的数据,主要用来辅助决策、为训练提供来源。
模型训练类:提供针对AI的模型训练服务,包括推理、对模型的建立、设定等
B端服务类:主要面向企业用户,提供企业服务类、垂直类、自动化的解决方案。
平台集合类:集成多种AI Agent服务和工具的平台。
交互类:与内容生成类相似,区别在于持续双向互动。交互类Agent不仅接受和理解用户需求,还通过自然语言处理(NLP)等技术提供反馈,实现与用户的双向互动。
情感陪伴类:提供情感支持和陪伴的AI Agent。
GPT类:基于GPT(生成式预训练Transformer)模型的AI Agent。
搜索类:专注于搜索功能,提供更准确的信息检索为主的Agent。
内容生成类:这类项目专注于创造内容,利用大模型技术根据用户指令生成各种形式的内容,分为文字生成、图像生成、视频生成和音频生成四类。
Web2 AI Agent发展现状分析
根据我们的统计,在Web2传统互联网中AI Agent的开发呈现出明显的板块集中趋势。具体来说,大约有三分之二的项目集中在基础建设类,其中主要是B端服务类和开发工具类居多,我们对这一现象也进行了一些分析。
技术成熟度的影响:基础建设类项目之所以占据主导地位,首先得益于其技术成熟度。这些项目通常建立在经过时间检验的技术和框架之上,从而降低了开发难度和风险。相当于AI领域的"铲子",为AI Agent的开发和应用提供了坚实的基础。
市场需求的推动:另一个关键因素是市场需求。与消费者市场相比,企业市场对AI技术的需求更为迫切,特别是在寻求提升运营效率和降低成本的解决方案方面。同时对于开发者而言,来自企业的现金流相对稳定,有利于他们开发后续项目。
应用场景的限制:与此同时,我们注意到内容生成类AI在B端市场的应用场景相对有限。由于其产出的不稳定性,企业更倾向于那些能够稳定提高生产力的应用。这导致了内容生成类AI在项目库中所占比例较小。
这一趋势反映了技术成熟度、市场需求和应用场景的实际考量。随着AI技术的不断进步和市场需求的进一步明确,我们预期这一格局可能会有所调整,但基础建设类仍将是AI Agent发展的坚实基石。
Web2的AI Agent龙头项目分析
我们深入探讨一些当前Web2市场上的AI Agent项目,并对它们展开分析,以Character AI, Perplexity AI,Midjourney三个项目为例。
Character AI:
产品介绍:Character.AI 提供基于人工智能的对话系统和虚拟角色创建工具。其平台允许用户创建、训练和与虚拟角色进行互动,这些角色能够进行自然语言对话并执行特定任务。
数据分析:Character.AI 在5月的访问量为2.77亿,平台拥有超过350万的日活跃用户,其中大部分用户年龄在18至34岁之间,显示出年轻化的用户群体特征。Character AI在资本市场上表现出色,完成了1.5亿美元的融资,估值达到10亿美元,由a16z领投。
技术分析:Character AI与谷歌母公司Alphabet签署了非独家使用其大型语言模型的许可协议,这表明Character AI采用的是自研技术。值得一提的是,公司的创始人Noam Shazeer和Daniel De Freitas曾参与开发谷歌的对话式语言模型Llama。
Perplexity AI:
产品介绍:Perplexity能够从互联网上抓取并提供详尽的答案。通过引用和参考链接确保了信息的可靠性和准确性,同时他会教育、引导用户进行追问和搜索关键词,满足了用户多样化查询需求。
数据分析:Perplexity的月活跃用户数量已达到1000万,其移动和桌面应用程序的访问量在2月份实现了8.6%的增长,吸引了约5000万用户。在资本市场上,Perplexity AI最近宣布获得6270万美元的融资,估值达到10.4亿美元,由Daniel Gross领投,参与者包括Stan Druckenmiller和NVIDIA。
技术分析:Perplexity使用的主要模型是经过微调的GPT-3.5,以及基于开源大模型微调的两款大型模型:pplx-7b-online和pplx-70b-online。模型适合专业学术研究和垂直领域的查询,确保信息的真实度和可靠性。
Midjourney:
产品介绍:用户可以通过Prompts在Midjourney创建各种风格和主题的图像,覆盖从写实到抽象的广泛创作需求。平台还提供图像混合与编辑,允许用户进行图像叠加和风格迁移,平台的实时生成功能确保用户在几十秒到几分钟内就